澳门全讯直播网-澳门金沙娱乐娱城骗人的

Newsroom

Social Footprint

Congratulations to Associate Professor Yue Hu and Her Team for Their Cover Article Published in Advanced Optical Materials

Release time: 2021-12-02

Recently the research paper by Associate Professor Yue Hu and her team “Size-Tunable Gold Aerogels: A Durable and Misfocus-Tolerant 3D Substrate for Multiplex SERS Detection” has been published as the cover paper in the famous optical journal Advanced Optical Materials.

SERS, due to its high sensitivity (can reach single molecule detection level), has been under spotlight and is regarded as one of the most promising analytical methods. However, the hotspot of traditional 2D SERS substrate is limited to X-Y plane only, which results in limited signal strength and poor focusing tolerance. Therefore developing a 3D SERS substrate becomes a new and essential focus of research direction. Although certain achievements have been made in the study of 3D SERS substrate, the feature size of the z direction of the solid 3D substrate in existing papers is less than 10μm, which is not ideal. However, Noble metal aerogels (NMAs), due to its multi-pore, large specific surface area, and self-supporting features, is highly likely to become a high-performance 3D SERS substrate to overcome the defects of traditional 2D SERS substrate. However it’s extremely difficult to control the sizes (e.g. the diameter of nanowire), which also restricts the study of structure-activity relationship and performance optimization.

In the preliminary work conducted by an international team led by Associate Professor Yue Hu of Wenzhou University, Professor Ran Du of Beijing Institute of Technology and Professor Alexander Eychmüller of Technische Universitat Dresden, through in-depth study of the metal aerogels synthesis methodology, a range of easy-to-control preparation methods were developed, which achieved effective control of the rapid preparation of metal aerogels and a wide range of feature size, specific surface area, and pore volume (Sci. Adv.2019, Nat. Commun.2020, Matter2020). On that basis, the same team worked together again. Take the gold aerogels with network feature size of 5-100 nm as an example, they researched on the feature size of aerogels substrate and the SERS activity dependence from theoretical and experimental perspectives. Through optimizing some parameters, they not only came up with durable and misfocus-tolerant SERS substrate (>300 μm), but also achieved high-sensitivity and multi-channel detection of dyes, pesticides and carcinogens.

Some of their research findings have been published in Advanced Optical Materials (DOI: 10.1002/adom.202100352) and have been chosen as the front cover article with Wenzhou University listed as first institute, Lin Zhou, a chemistry postgraduate student enrolled in 2016 as the first author of this article, and Associate Professor Yue Hu from the School of Chemical and Material Engineering of Wenzhou University as corresponding author.


The researchers first of all prepared a range of gold aerogels with the feature size (nanowire diameter) of 5-100 nm. Research shows that SERRS enhancement factor (EF) can be affected by the feature size and excitation wavelength of gold aerogels. Under the same excitation wavelength, the enhancement factor has an optimal feature size. However along with the red shift of the excitation wavelength the corresponding optimal feature size also increases, which is also observed in many probe molecules. By adopting the finite difference time domain theory (FDTD) simulation and using gold nanorods or tetrapods as models, it can be clearly observed that with the increase of diameter, the absorption wavelength also gradually moves towards the long wave. From that we can infer that the resonant excitation wavelength of gold aerogels is positively correlated with the feature size, which can to some extent explain the mechanism of the dependence between SERS activity and the feature size of the excitation wavelength.

Compared to typical 2D SERS substrate (8 nm gold film), gold aerogels display higher enhancement factor (up to 8.9×109) against dyes, pesticides and carcinogens, which is higher than most of the 3D SERS substrates reported so far (105-107). In addition, gold aerogels are not only reusable but also extremely stable (>1 month) and has superior multi-channel detectability, which indicates that it has outstanding practical applications. Finally, gold aerogels also are misfocus-tolerant (along z direction>300 μm). It means even when it’s used in multi-channel detection, the value can still reach 150 μm, which is higher than the existing solid 3D SERS substrates.

This research systemically studied the structure-activity relationship and property features of NMAs as 3D SERS substrates, obtained genuine 3D SERS substrate, laid a solid foundation for the design of aerogel-based 3D SERS substrate, and pointed out a new direction for achieving durable misfocus-tolerance, high-stability, high-sensitivity, and multi-channel SERS detection.

2024-03-04

WZU Education Majors Achieve Sixth Place Nationwide in the 9th "Tian Jiabing Cup" National Teaching Skills Competition From December 29th to 31st, the finals of the 9th "Tian Jiabing Cup" National Teaching Skills Competition for education majors were held at Zhejiang Normal University. A total of 1611 participants from 226 universities nationwide competed in this event, with 10 participants from our university. They achieved 4 first prizes, 1 second prize, and 5 third prizes, ranking sixth in the nation for the number ...

2023-10-17

Researcher ZHANG Lijie from the College of Chemistry and Materials Engineering Publishes Academic Paper in "Nature Nanotechnology", Sub-journal of Nature Two-dimensional materials possess novel physical properties such as atomic-level thickness, excellent electronic transport, and optoelectronic characteristics. They serve as ideal platforms for the development of high-performance electronic and optoelectronic devices, potentially extending the traditional silicon-based semiconductor industry based on "Moore's Law" and further enhancing chip tra...

Contact Us

International Relations Office, Wenzhou University

Postal Address: 6th Floor, Administrative Building, South Campus, Wenzhou University, Chashan University Town, Wenzhou City, Zhejiang Province, China 325035

Tel: 0086-577-86680971 86598029

Fax: 0086-577-86598029

E-mail: fao@wzu.edu.cn

Stay Connected

什么是百家乐官网平注法| ez百家乐官网技巧| 大发888下载不了| 真人百家乐官网蓝盾赌场娱乐网规则 | 百家乐官网有几种打法| 新彩百家乐官网的玩法技巧和规则| 网上百家乐骗人吗| 百家乐群博爱彩| 博士娱乐| 波胆网站| 百家乐最佳公式| 锡林郭勒盟| 百家乐破战| 百家乐官网白茫茫| 澳门顶级赌场手机在线链接| 真人百家乐官网最高赌注| 蓬安县| 女神百家乐的玩法技巧和规则| 百家乐官网看点打法| 真人百家乐博弈| 捷豹百家乐官网的玩法技巧和规则 | 大发888游戏平台dafa888gw| 678百家乐官网博彩赌场娱乐网规则| 百家乐赌场娱乐网规则 | 百家乐官网轮盘| 德州扑克的技巧| 和平县| 在线百家乐作弊| 博彩百家乐龙虎| 百家乐官网娱乐平台会员注册| 百家乐官网长路投注法| 大发888赌博| 大发888官网sscbcgsesb| 哪里有百家乐游戏下载| 段风水24宿| 沙龙百家乐官网娱乐| 百家乐官网有方法赚反水| 棋牌游戏开发商| 澳门百家乐娱乐平台| 百家乐代理占成| 机器百家乐官网心得|